Name: *Triumph in the Tropics, 1959*

Section name: Part Two, Chapter XXII, Land and Water Harnessed for Harvest

Pages: 276–287

Printing Notes (Adobe Acrobat): For best results “Page Scaling” should be set to “Fit to Printable Area”. “Auto Rotate and Center” should also be checked.

CHAPTER XXII
LAND AND WATER HARNESSED FOR HARVEST
AGRICULTURE IN QUEENSLAND

"Pathfinders, roadmakers and Cyclopean architects of a land whose horizons are not yet limited and whose development no man can assess," was the tribute paid to surveyors by the Governor of Queensland, His Excellency, Sir Henry Abel Smith, K.C.V.O., C.S.O., when opening the Fourth Survey Congress of the Institution of Surveyors of Australia, at Brisbane in May 1958.

When the new State was proclaimed in 1859, the explorer, Augustus Charles Gregory was appointed as the first Surveyor-General of Queensland.

The creation of the new State had made the definition of its borders necessary, and the survey of the southern and western boundaries of the State was started at Point Danger in 1866 and finished at the Gulf in 1886. It was work that called for especial accuracy under great hardship in rugged and inhospitable regions and continued, collected and improved what had formerly been done from the office of the Surveyor-General in Sydney—of whom Oxley had been the first. Many surveys were carried out locating holdings, farms, new towns, rivers, and ranges; and maps were prepared incorporating the scanty information previously available. The maps, which were drawn in the office, were lithographed by Thomas Ham and Co. The first map of the colony was produced by Leopold Franz Landsberg, a government surveyor, in 1860; it showed the south-east corner, from Cape Palmerston south. In 1863 the whole of Queensland was lithographed by Thomas Ham and Co. and published by J. W. Burton; it was not, however, until 1871 that the first official map was compiled by T. Ham and engraved by W. Knight; it was followed in 1872 by a map of the country south from Broadsound, showing occupied "runs" as far west as Longreach and Thargomindah.

Gregory held office until 1873 when his Department was merged with, and came under the control of, the Lands Department, with W. Alcock Tully as Surveyor-General and Under Secretary for Lands. On his advice the offices were separated again in 1881, Deshon taking over the Lands Department as Under Secretary. In 1881 the map of Queensland was published.

In 1882, for the information of persons intending to migrate, a series of maps showing land open to selection in every district in the colony, the price per acre, etc., was prepared for exhibition in the Agent-General's Office in London, and an exhibition of similar maps was held in Head Office, Brisbane. In this year 110 maps were published by the photo-lithography method.

By 1891-2, under Surveyor-General A. McDowall, most of the mapping for other departments was done in the Survey Office, and, in addition, the mapping for the Administration of British New Guinea was prepared there. In 1892 the Survey Office also undertook the printing of a geological map of Queensland, together with the colour plates for the microscopic rock sections for a book on geology by R. Logan Jack and Robert Etheridge.

Surveyors fulfilled a major role in the closer settlement of the State. To the Staff Surveyor was entrusted the work of classifying the country according to soils and potential land use, locating roads and preparing the design of subdivision. The private surveyor was given the survey of the boundaries and road lines. These were very busy times and probably the most romantic period in local surveying history. The work available attracted surveyors from other States to Queensland, and survey camps were to be found all over the State—developing the sugar lands from the jungles of the north; the closer settlement schemes of the south-east corner of the State and the Darling Downs; major schemes such as the South Burnett, then large cattle properties associated with such names as Barambah, Boonara, Taabinga and many others (now served by the railways and highways to such towns as Kingaroy, Goomeri, Murgon, Wondai, and others); later, the Upper Burnett Scheme converted the bush to thriving towns such as Monto; the wild country of the Callide Valley and Dawson Valley grew prosperous towns like Biloela and Theodore; and numerous other closer settlement schemes followed the same pattern.

In the west and far west, many of the large and well-known sheep and cattle stations were subdivided into grazing selections. Throughout this period, survey camps were fully staffed and well established and, of course, the horse was the only means of transport. Living was hard but healthy. The change over to motor transport took place from early 1920 to 1930, revolutionising the ways and living not only of surveyors, but also of all people living in the country.

During the First World War surveyors were engaged on surveys of coastal towns for the preparation of topographical maps for war purposes; in the first post-war period an area of about 4,000,000 acres was being surveyed annually. By 1939 the work of the land surveyor in Queensland, since Separation, had resulted in a total of over 100,000 plans of survey being lodged in the Office's strong room. Railways, paved roads, mineral fields, geological and geophysical investigations, and hydrographic surveys have all contributed to the vast and versatile field of survey in the State.

The development of aerial mapping in the mid-thirties eliminated much difficult preliminary investigation.

In 1936, the Survey Office entered into its first contract with...
Adastra Airways for aerial photography of 650 square miles in North Queensland; and from 1940-45, during the second war, aerial mapping became an important factor in the preparation of A.R.P. and Military maps. In the second post-war period, these aerial photos were used extensively for investigation, classification and design of areas for soldier settlement as well as for topographic details of office maps. An aerial photo library was established in the Survey Office, and with the establishment of the National Mapping Council the State benefited by the co-operation between State and Commonwealth authorities in the scheme to provide air coverage for the whole State. In 1950 the mapping equipment was brought up to date with the purchase of aerial plotting machines, and the activities of the Department have greatly increased under Surveyor-General J. P. Harvey (appointed 1929). One great but little known activity was the plotting of the artesian basins of the country—a vital factor in its economy.

Meanwhile, the Department of Lands governed the areas that more and more took definition under the theodolite, and interpreted the changing emphasis of governmental policy.

When the first Parliament (Legislative Assembly and Legislative Council) met in 1860, “Squatters’ Party” and “Town Party” representatives found themselves at bitter odds on land policy. The squatters desired to retain large areas (for sheep and cattle grazing) at low rents and under unconditional and secure tenures. The “Town Party” required rapid increase in population to promote its economy. As the town interests secured more political power and influence, the squatter interests were progressively forced onto the defensive.

In the first Parliament “The Crown Lands Alienation Act of 1860” was passed which set aside “Agricultural Reserves” in the settled districts. In these, an applicant could select his own land up to 320 acres for purchase at twenty shillings per acre. In 1863 the “squatters” retaliated with the “Agricultural Reserves Act” of that year under which development conditions were imposed on land taken up under the 1860 Act. This Act established the principle of permanent land settlement by conditional purchase, which remained the main basic principle of all land settlement legislation for fifty years. By 1868 it was found necessary to bring together all the previous land legislation affecting the settled districts. “The Consolidating Land Act of 1868” was therefore a very definite step in the progress of land settlement. Under this Act land commissioners and land rangers were appointed; resumptions from pastoral holdings were provided for; selection areas were restricted; penalties were provided for evasion and fraud; and various clauses dealt with occupation of selections and improvements on selections. The “squatters” again retaliated in 1869 by the Pastoral Leases Act of that year. This was an endeavour to obtain relative security for “Runs” in the unsettled districts. A new principle under this Act was the sale to pastoral lessees, as freehold, of the improved parts of their runs, up to 2,560 acres. Much of the best land was “freeholded” under this Act. In 1876 a further partial consolidation of land laws took place. It enlarged the principle of homestead selection under personal residence. It provided for selection either under conditional purchase or under homestead conditions by auction sale. (In 1880, incidentally, the first Rabbit Act was passed.)

In 1884 a comprehensive Land Act, consolidating previous laws, enacted several important laws. A Land Board and Land Board Courts were constituted. Rents and compensation were to be fixed by the Board; pre-emptive purchase by pastoral lessees was abolished; resumptions from pastoral holdings were provided for by the granting, where application was made by the lessees, of new leases of the balances of the holdings; and agricultural farm, and grazing farm selection, under the ballot system, became basic features of permanent land settlement.

By 1892 the rabbit pest, which had seemed incidental, had become a permanent handicap to grazing lands. Many runs and selections had been enclosed with rabbit netting fences, and the “squatters” had been rewarded for this by extensions of their leases under the Pastoral Leases Extension Act of that year.

“The Consolidating Act of 1897” established the Land Court and enlarged the provisions for agricultural, grazing and scrub selection tenure. A new principle for priority in grazing selection, by the acceptance, from applicants, of tenders of the rate of rent for the first periods, was enacted. (This proved a failure as much uneconomic renting resulted.) About this time the Labour Party with its closer settlement policy became more and more dominant, and the squatters’ interest began to disappear from effective land policy.

From about 1880 onwards prickly-pear became progressively a serious menace on the country lands. In 1902 the first prickly-pear selection measure was passed in the Land Act of that year.

More extensive development of selections and their production was assisted between 1900 and 1910, by such measures as “The Public Works Land Resumption Act of 1906,” and “The Closer Settlement Act of 1906.”

(In 1908 perpetual lease selection had been provided for; and in 1909 “Group Settlement” became a feature of the land law.)

The year 1910 marks the final establishment of closer settlement by selection, wherever possible, as the ultimate destiny of all country land. It brought pastoral leases finally under the control of a comprehensive Land Act, and enacted the progressive steps for their elimination, in all localities where closer settlement tenure was possible. This comprehensive measure is a landmark in settlement and the many amendments since are mainly designed to secure its more efficient operation. The Prickly-pear Land Act of 1923 established the Prickly-pear Land Commission and under it all prickly-pear infested lands have been reclaimed.

“The War Service Land Settlement Act of 1946” provided for the settlement on the land of discharged members of the naval, military and air forces under perpetual lease selection tenure whilst “The War Service Land Settlement Acquisition Act of 1945” was enacted for the purposes of securing lands (by way of compulsory acquisition or acquisition by agreement) for war service land settlement purposes.

(Abridged and paraphrased from data kindly provided by J. J. Bergin, Director of Land Development.)
Early settlement was facilitated by the vast tracts of good quality grassland (such as the Darling Downs) which were open or lightly timbered and in many cases served with abundant water by various rivers, creeks, lagoons and springs; but conditions became more difficult as the pioneers encountered the great brigalow scrub and the sparsely watered country westerly.

The water problem in the far west was acute but, as the rich open downs, some 600 miles from the coast, provided the Mitchell and Flinders grasses that could feed many millions of stock, the pioneers considered the hardships were worthwhile. Many means were adopted to store water, but as the area had a low rainfall and high evaporation rate, with periods of drought, permanent water supplies were essential. At this critical stage, intelligently directed research led to the discovery of the Great Artesian Basin, which, to the extent of
South-West Channel Country.—Cooper’s Creek flood of 1949, eighty miles south of Goombabing.
Taken from 15,000 feet.

The area shown is approximately 800 square miles—a portion of a flood plain described as the world’s most perfect natural irrigation system. (Gradient about 11in. to 1 mile.)

PLATE XLVII.
Bore No. 1 (1885) Murweh Station, depth 1,800 feet. Estimated flow 3,000,000 gals. daily—still flowing.

Naretha, an artesian bore situated twenty-five miles west of the township of Quilpie in the south-west of the State. The bore has a daily flow of over half a million gallons of good stock water which is distributed over a large area of pastoral grazing land by seventy miles of shallow drains.

As the bore hole is 3,250 feet deep the flowing water is hot at the bore head, but becomes palatable within a short distance along the drains.

The flow is expected to run indefinitely at about half a million gallons each day.
SOMERSET DAM

PLATE XLIX.

(Courtesy of State Public Relations Bureau.)
PAPAIAS
(By courtesy of the Dept. of Agriculture and Stock, Brisbane)

MANGOES
(By courtesy of the State Public Relations Bureau)

BANANAS
(By courtesy of the State Public Relations Bureau)

PINEAPPLES
(By courtesy of the "Courier-Mail," Brisbane)

PLATE L
430,000 square miles, underlies parts of Queensland and extends also into New South Wales, South Australia, and the Northern Territory over an additional area of some 240,000 square miles.

Almost half of the surface water supplies of all Australia occur in Queensland. The Gulf of Carpentaria and the East Coast drainage basins have an estimated annual run-off of 95 million acre-feet; for the whole of Australia the run-off is estimated at 200 million acre-feet. Some 21 per cent. of Queensland during the years 1921 to 1950 received an average annual rainfall of over 30 inches; 27 per cent. was in the 20-30 inches rainfall belt; and 52 per cent. of the State received less than 20 inches. Rainfall and consequent run-off occur, however, mainly during the first few months of the year, and there are large variations from month to month, and also from year to year. Thus only major storages could ensure substantial use of these large but variable flows.

The major part of the Great Artesian Basin of Australia, the largest in the world, is, as mentioned above, in Queensland, extending roughly westward from the Great Dividing Range, and representing a vast storage area of underground water. It is upon the discovery and use of this underground water basin that the development of the great grazing and wool growing industry in those wide areas, is based.

Records show that, by 1884, three shallow artesian bores had been drilled in Queensland, but only one, drilled into a spring on Manfred Downs in the Julia Creek district, is within the area of the main basin. The first deep bore commenced in the artesian basin in Queensland was at Blackall in 1885. (It is still flowing.) However, while drilling at Blackall was in progress, a bore was commenced and a flow obtained on Thurrulgoonia Station in the Cunnamulla district, in advance of the Blackall bore.

By the end of 1899, 524 bores had been sunk of which 505 were successful and were delivering 224,000,000 gallons of water every 24 hours, and this increased until, at 30 June 1958, 2,565 artesian bores had been registered with an estimated total flow of 205,000,000 gallons per day. Although the number of bores has increased since 1914, the total flow per day has decreased. As a result of a commission of enquiry it was decided that surface flows from bores should be controlled, and regulated to meet actual requirements; "bore water areas" have been declared in respect of 70 bores, accordingly, each serving more than one property. These bores supply 2,754 miles of drains.

Substantial areas of underground water are utilised for irrigation in the Inkerman (Home Hill), Callide, Lockyer and Fassifern Valleys, and Bundaberg and Mackay districts. Moreover, so far as surface water is concerned thirty-nine weirs with a total capacity of 49,430 acre feet have been constructed, up to 1959; and investigations have been carried out into the possibility of storage sites on many of the State’s rivers, and construction of conservation works. These include the Barron-Walsh, Burdekin, Nogoa, Dawson and Dumaresq-Barwon Rivers, and Reynolds Creek; the Burnett, Fitzroy and Mary Rivers, and Macintyre Brook systems.
A scheme of water provision on main stock routes throughout the State was inaugurated in 1935.

(The Irrigation and Water Supply Commission is the constructing authority of water facilities required on these stock routes, and 376 watering facilities have been constructed by the Commission, including 34 artesian bores and 170 sub-artesian bores and wells.)

The Commonwealth is sharing with the State expenditure amounting to £300,000 on the provision of watering facilities on stock routes leading into and out of the Channel Country and on the road from Cannoowal to Mt. Isa. (Up to 1958 an expenditure of £260,000 had been incurred since 1949 on these works.)

(Acknowledgement is made for data kindly supplied from the Irrigation and Water Supply Commission.)

PRODUCTION

The east coast and hinterland (with the Darling Downs) have advantages over the more western lands, but it was evident very early in the history of the State that cereals, sugar cane, fruit, and small crops of a wide variety could be grown in any quantity likely to be required, and that dairying land was almost unlimited. The expansion of these primary industries is still limited only by profitable markets. Agricultural production (excluding dairying) is now second only to pastoral production in the list of Queensland's primary industries, and the gross value of all agricultural production in the State for the year 1957-58 was £85,765,000, of a total primary production valued at £253,867,000.

Dairying ranks next to sugar as the most important primary industry in coastal Queensland. Crops which require a summer rainfall are grown in the coastal and sub-coastal parts of Queensland, particularly on the better soils and alluvial river flats. The most important are maize, sorghum, lucerne, bananas, pineapples, cotton, citrus, pumpkins, potatoes, tomatoes, tobacco, and peanuts. Strangely enough, wheat, a typical winter-growing cereal, has become a more important crop than maize. It is grown on the fertile black soil plains of the Darling Downs, an area not regarded as coming under the term "sub-coastal."

In recent years production of grain sorghum, which is a summer-growing cereal capable of being harvested mechanically, has expanded rapidly on the Darling Downs and in parts of sub-coastal Queensland.

Many of the fruits of the British Isles and Continental Europe grow almost everywhere except on the coast north of the Tropic of Capricorn; apples and stone fruits reach perfection on the elevated lands of the Darling Downs, and the Granite Belt. Cereals and root crops are produced in the Southern and East-Central districts equal in quality and yield to the crops in the Southern States and overseas countries.

ACCLIMATISATION OF PLANTS AND ANIMALS

One of the most important characteristics of primary production in Queensland is that, with one exception (the "Queensland" or "macadamia nut"), every commercially-produced crop has had its origin in some other part of the world.

Seed for crops, and foundation stocks of animals, had to be imported when there was an imperfect knowledge of many diseases and the methods of combating them and obtaining parasite-free importations. Inevitably, seeds came in contaminated by fungal spores or bacterial infections (and animals infested by, at least, internal parasites, were included in the shipments). With seeds, too, it was inevitable that contaminating weed seeds were included. Queensland thus received not only the means to establish its primary industries, but many of the inhibitors and "curses" as well. Diseases are generally caused by living organisms which reproduce far more quickly than the best plant or animal; and every generation of these pests provides the opportunity and the material for modification to the new environment.

Early in the history of our agriculture, disease threatened to wipe it out, wheat providing an outstanding example.

William Farrer's efforts in producing new wheats to replace those from Britain and South Africa and, in doing so, overcoming the menace of the rust disease, not only saved the wheat industry but did much more. They awakened an awareness of the inestimable value of plant breeding as a tool in overcoming disease, both introduced and indigenous.

The second development was crop and animal improvement by deliberate breeding and selection, quite apart from disease resistance. (In practice the two approaches must be simultaneous.)

Some of the crops to which the technique has been applied with outstanding success are wheat, oats, barley, grain sorghum, maize, sugar cane, peanuts, and vegetables. Less spectacular, but still important, results are being achieved with fruits, grasses and forage crops, and cotton.

With plant breeding going on all over the world, agricultural scientists and farmers are always on the alert to import promising new varieties, but plant introduction, now, is a very different proposition from what it was in the 1870's, when Farrer pitted his brain against the rust disease.

Not only has scientific knowledge of the diseases themselves been immeasurably increased but, by the enforced quarantine legislation, the introduction of diseased material is kept at a minimum.
One hundred years ago, apart from progressive individuals, importation was largely left to such institutions as the Queensland Acclimatisation Society. This body of far-sighted and public-spirited men introduced hundreds, probably thousands, of new plants, but although they recognised the risks, they had neither the facilities nor the necessary knowledge of many diseases to recognise these. Even if they had had them they still could not have commanded the services of overseas helpers to control the material at its source.

The introduction of many diseases in the early days was prevented primarily because diseased plants simply could not survive the long, slow, sea voyage, and the changing climatic conditions. To-day, with air travel and protection from the vicissitudes of climate, the story would be very different, so that imported material must now be accompanied by certificates of health from competent authorities, after having been grown in quarantine in the country of origin for a stipulated period. Constant vigilance by trained personnel remains, however, a vital necessity to guard against the risks of chance introduction of new diseases.

(Abridged and paraphrased from data kindly supplied by Dr. W. A. T. Somerville, Under Secretary, Department of Agriculture and Stock.)

AGRICULTURE

In 1855 some land near Toowoomba was alienated and farming begun there, but despite the fact that wheat-growing in particular was expanding on pastoral properties and flour mills were operating at Warwick and Toowoomba, the Darling Downs remained mainly pastoral in the 1860's.

Under the Agricultural Reserves Act of 1863 some farming settlements had sprung up, and there was a big advance in agriculture between 1870 and 1875, as it was learned that grazing land could grow maize, lucerne, oats, sorghum, barley and rye.

On the Moooloolah and Maroochy rivers sugar plantations had been started in 1870.

At the turn of the century the Blackall Range was known as "Strawberry Land"; in one season over 50 tons of strawberries were despatched by train to southern markets from the Palmwoods railway station. With the construction of the North Coast line from Brisbane to Gympie as the first stage in 1888, the hills, spurs and valleys of the fertile Blackall Range country, with their dense vegetation of forest trees, palmettos, cabbage palms, jungle of undergrowth and vine creepers, and ample rainfall, were opened up as an agricultural and fruit-growing country. Practically all the land on the Blackall Range within easy distance of the railway had been taken up by 1900. (These early farm lands were acquired by the pioneers of this region for 2/6 an acre in yearly instalments of 3d.) To-day the Near North Coast and Maroochy River districts produce large quantities of sugar, butter, fruit and timber, apart from their rich dairying industry.

Agriculture in the Gympie district had its genesis with the goldfield in 1867. For many miles both above and below Gympie, farms were taken up for the primary purpose of supplying the considerable mining population on the field. Most of the farmers also owned cows, and the produce of their dairies was usually their principal means of support while bringing their farms into cultivation. The warm hillsides are now extensively used to grow pineapples, papaws, tomatoes, bananas and many other small crops.

Lockyer, Fassifern, Logan and Albert districts are fertile agricultural and dairying regions. The valley of the Lockyer Creek, a tributary of the Brisbane River, includes the most compact and extensive area of irrigable alluvial soil in Queensland.

The Fassifern district, of which Boonah is the centre, is celebrated for its dairy products, its chief source of wealth. Agriculture, dairying, cattle raising and timber milling are the principal industries of the Logan and Albert districts.

Cultivation of wheat, most of which is grown on the Darling Downs, has shown remarkable expansion in recent years, principally on the northern and western Downs, and the 1958 harvest, exceeding 20 million bushels, gave Queensland the biggest wheat yield in its history.

The first wheat to be grown in Queensland is believed to have been cultivated at the "Ploughed Station," Ipswich, 119 years ago. This area is now known as Silkstone. Warwick was the first district to develop wheat growing on a large scale; while the production of wheat on the Downs dates back to the Leslies on Canning Downs in 1843.

Queensland wheat is of high milling quality and there is a growing export market. (Commodity-board marketing legislation was initiated in Queensland originally in the interests of State wheat growers.)

With the expansion of wheat growing on the Darling Downs maize forfeited its position as the main grain crop in the 1920's, and since the late 1930's has been challenged by grain sorghum for the lead as a summer grain. Maize still retains its predominant position on the Atherton Tableland, in the South Burnett, and in various southern valleys such as the Lockyer and Fassifern. Grain sorghum is more suitable for country that is marginal or too dry for maize and, in such areas as the Darling Downs, the Callide Valley and the Central Highlands, is the main competitor to wheat.

The several districts embraced in the watershed of the Burnett River were devoted wholly to pastoral pursuits until the late 'seventies, when closer settlement began and selectors commenced dairying and crop growing in the South Burnett. The realisation that the South Burnett was better suited to agriculture and dairying than to sheep raising was sharpened by the difficulties of running sheep in the 1880's. It has developed into one of the main agricultural and dairying regions of the State. The two main crops of the early part of this century—maize and peanuts—remain the most important there, but wheat, grain, sorghum, potatoes, lucerne and several other crops are also extensively grown.

The Central and Upper Burnett regions are less favoured for agriculture than the South Burnett, and both are still very largely devoted to pastoral and dairying pursuits. Following the opening of the Upper Burnett lands in the early 1920's, cotton growing was the main agricultural pursuit for some years, but lucerne, potatoes, maize, grain sorghum and other crops are now also grown to a considerable extent.
The Central Burnett has become one of the State's major citrus growing areas, the river alluvials being very suitable for this crop and ample water being available from the Burnett River.

With the exception of some fruit crops, horticultural production in Central Queensland reached its peak during the second World War, when large quantities of fruit and vegetables were required for the Services. The Yeppoon area is the main production centre for pineapples, while the banana reached the peak of its production about 1930 when rain-forest soils at Yeppoon and Byfield, and near Mackay, were planted extensively. Yarwun is the biggest production centre for papayas. The citrus industry is the oldest in the district, but Byfield is the only place where citrus is harvested in quantity.

The story of the Far North Coast is largely one of sugar and bananas. (The sugar story is told later.) Bananas became firmly established on the rivers in the rain-forests surrounding Cairns, Innisfail, Tully, etc., and the industry was built up so that 20,000 bunches were often shipped on one boat. Quarantine restrictions imposed in Victoria, however, shipping disabilities, and the preferential treatment accorded Fijian bananas all militated against the industry and its prosperity was short-lived.

The Burdekin delta has been mainly a sugar-cane area, but with the development of irrigation further up the river in the 1940's and later, tobacco growing has become important.

Farming on the Atherton Tableland had its genesis in the needs of mining communities and timber-getters for butter, chaff and other farm produce. Mixed farming was begun in the early 1880's, but expansion was limited pending the building of roads and railways to provide access to larger markets. Maize was grown by Chinese in the 1880's. Settlement began in earnest in 1909 with the opening up of land for agriculture and dairying and the building of a butter factory near Atherton. Maize is still the main field crop on the Tableland proper, but tobacco growing, which was established in the Mareeba-Dimbulah area in the 1930's, has become important.

(In 1957-58 all Queensland produced 49 per cent. of the Australian crop, the area under cultivation in that year being 6,301 acres, producing 3,702,000 lb. of dried leaf. Two-thirds of this production was from the Mareeba district (Atherton Tablelands), one-fifth from the Ayr district, and one-ninth from the Texas district, south of the Downs.)

The story of tobacco growing in Queensland goes back to 1860, when three acres were grown in the Rockhampton district. In 1877, 53 acres were under cultivation, and the output in that year was 27,680 lb. cured leaf. Tobacco was first planted in the Texas district about 1866 by W. McPhillips. By 1900, 374,752 lb. of leaf was being produced in the Texas district alone.

Peanut cultivation has developed into a highly important industry. Peanuts have been grown in Queensland in small quantities for many years. The most important peanut-producing region is the Nanango-Kingaroy-Murgon district in the south-west of the Maryborough division; followed by the Atherton Tableland, and by areas near Rockhampton. (The crop is processed and marketed by the Peanut Marketing Board.)

Cotton production was stimulated during the war years, the 1941 and 1942 seasons averaging 15 million lb. of seed cotton from 60,000 acres. (In 1955-56, 13,290 acres were harvested for 5,359,000 lb. of seed cotton.) The present production of cotton is mostly in the Rockhampton and Maryborough division, especially in the Callide Valley and Upper Burnett. Ginning and marketing are carried out by the Queensland Cotton Marketing Board, which operates ginneries at Whinstanes (Brisbane) and Rockhampton.

Value of Queensland's fruit crop in 1957-58 was £7,116,036. Queensland is practically the sole Australian source of pineapples and other tropical fruits, and supplies approximately one-eighth of the Australian banana crop. Queensland's coastal strip, much of which is virtually frost free, enables most tropical and sub-tropical fruits to be grown successfully.

(Acknowledgement is made for data kindly supplied by C. W. Winders, B.Sc. Agr.)

THE STATE'S WEALTH

PRODUCTION FROM PRIMARY AND MANUFACTURING INDUSTRIES

Text Figure 14.

Figures for primary industry are gross value; for manufacturing, net value. (These are the latest figures available.) (By courtesy of the Land Administration Board.)